KMP算法
本篇为个人笔记,内容或有错误。
图片部分源于代码随想录,侵删。
字符串操作主要考虑格式的转换。
实现strStr()
KMP的经典思想就是:当出现字符串不匹配时,可以记录一部分之前已经匹配的文本内容,利用这些信息避免从头再去做匹配。
摘要
构造next数组
next数组的本质就是前缀后缀相同的字符位数表
实现方式常见的有减一、右移和保持不变三种,但是本质都是一样的,只在细微地方有区别,本文采用减一方式,其他方式代码详见前缀表(不减一)C++实现
我们定义一个函数getNext来构建next数组,函数参数为指向next数组的指针,和一个字符串。 代码如下:
void getNext(int* next, const string& s)
构造next数组其实就是计算模式串s,前缀表的过程。 主要有如下三步:
- 初始化
- 处理前后缀不相同的情况
- 处理前后缀相同的情况
接下来我们详解详解一下。
初始化:
定义两个指针i和j,j指向前缀末尾位置,i指向后缀末尾位置。
然后还要对next数组进行初始化赋值,如下:
int j = -1;
next[0] = j;
j 为什么要初始化为 -1呢,因为之前说过 前缀表要统一减一的操作仅仅是其中的一种实现,我们这里选择j初始化为-1,下文我还会给出j不初始化为-1的实现代码。
next[i] 表示 i(包括i)之前最长相等的前后缀长度(其实就是j)
所以初始化next[0] = j 。
处理前后缀不相同的情况
因为j初始化为-1,那么i就从1开始,进行s[i] 与 s[j+1]的比较。
所以遍历模式串s的循环下标i 要从 1开始,代码如下:
for (int i = 1; i < s.size(); i++) {
如果 s[i] 与 s[j+1]不相同,也就是遇到 前后缀末尾不相同的情况,就要向前回退。
怎么回退呢?
next[j]就是记录着j(包括j)之前的子串的相同前后缀的长度。
那么 s[i] 与 s[j+1] 不相同,就要找 j+1前一个元素在next数组里的值(就是next[j])。
所以,处理前后缀不相同的情况代码如下:
while (j >= 0 && s[i] != s[j + 1]) { // 前后缀不相同了
j = next[j]; // 向前回退
}
处理前后缀相同的情况
如果 s[i] 与 s[j + 1] 相同,那么就同时向后移动i 和j 说明找到了相同的前后缀,同时还要将j(前缀的长度)赋给next[i], 因为next[i]要记录相同前后缀的长度。
代码如下:
if (s[i] == s[j + 1]) { // 找到相同的前后缀
j++;
}
next[i] = j;
最后整体构建next数组的函数代码如下:
void getNext(int* next, const string& s){
int j = -1;
next[0] = j;
for(int i = 1; i < s.size(); i++) { // 注意i从1开始
while (j >= 0 && s[i] != s[j + 1]) { // 前后缀不相同了
j = next[j]; // 向前回退
}
if (s[i] == s[j + 1]) { // 找到相同的前后缀
j++;
}
next[i] = j; // 将j(前缀的长度)赋给next[i]
}
}
代码构造next数组的逻辑流程动画如下:
得到了next数组之后,就要用这个来做匹配了。
使用next数组来做匹配
在文本串s里 找是否出现过模式串t。
定义两个下标j 指向模式串起始位置,i指向文本串起始位置。
那么j初始值依然为-1,为什么呢? 依然因为next数组里记录的起始位置为-1。
i就从0开始,遍历文本串,代码如下:
for (int i = 0; i < s.size(); i++)
接下来就是 s[i] 与 t[j + 1] (因为j从-1开始的) 进行比较。
如果 s[i] 与 t[j + 1] 不相同,j就要从next数组里寻找下一个匹配的位置。
代码如下:
while(j >= 0 && s[i] != t[j + 1]) {
j = next[j];
}
如果 s[i] 与 t[j + 1] 相同,那么i 和 j 同时向后移动, 代码如下:
if (s[i] == t[j + 1]) {
j++; // i的增加在for循环里
}
如何判断在文本串s里出现了模式串t呢,如果j指向了模式串t的末尾,那么就说明模式串t完全匹配文本串s里的某个子串了。
本题要在文本串字符串中找出模式串出现的第一个位置 (从0开始),所以返回当前在文本串匹配模式串的位置i 减去 模式串的长度,就是文本串字符串中出现模式串的第一个位置。
代码如下:
if (j == (t.size() - 1) ) {
return (i - t.size() + 1);
}
那么使用next数组,用模式串匹配文本串的整体代码如下:
int j = -1; // 因为next数组里记录的起始位置为-1
for (int i = 0; i < s.size(); i++) { // 注意i就从0开始
while(j >= 0 && s[i] != t[j + 1]) { // 不匹配
j = next[j]; // j 寻找之前匹配的位置
}
if (s[i] == t[j + 1]) { // 匹配,j和i同时向后移动
j++; // i的增加在for循环里
}
if (j == (t.size() - 1) ) { // 文本串s里出现了模式串t
return (i - t.size() + 1);
}
}
此时所有逻辑的代码都已经写出来了,力扣 28.实现strStr 题目的整体代码如下:
前缀表统一减一 C++代码实现
class Solution {
public:
void getNext(int* next, const string& s) {
int j = -1;
next[0] = j;
for(int i = 1; i < s.size(); i++) { // 注意i从1开始
while (j >= 0 && s[i] != s[j + 1]) { // 前后缀不相同了
j = next[j]; // 向前回退
}
if (s[i] == s[j + 1]) { // 找到相同的前后缀
j++;
}
next[i] = j; // 将j(前缀的长度)赋给next[i]
}
}
int strStr(string haystack, string needle) {
if (needle.size() == 0) {
return 0;
}
int next[needle.size()];
getNext(next, needle);
int j = -1; // // 因为next数组里记录的起始位置为-1
for (int i = 0; i < haystack.size(); i++) { // 注意i就从0开始
while(j >= 0 && haystack[i] != needle[j + 1]) { // 不匹配
j = next[j]; // j 寻找之前匹配的位置
}
if (haystack[i] == needle[j + 1]) { // 匹配,j和i同时向后移动
j++; // i的增加在for循环里
}
if (j == (needle.size() - 1) ) { // 文本串s里出现了模式串t
return (i - needle.size() + 1);
}
}
return -1;
}
};